If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+70w-40=0
a = 1; b = 70; c = -40;
Δ = b2-4ac
Δ = 702-4·1·(-40)
Δ = 5060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5060}=\sqrt{4*1265}=\sqrt{4}*\sqrt{1265}=2\sqrt{1265}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(70)-2\sqrt{1265}}{2*1}=\frac{-70-2\sqrt{1265}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(70)+2\sqrt{1265}}{2*1}=\frac{-70+2\sqrt{1265}}{2} $